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Figure 1: System Overview: (Left) View of edits and spatial annotations made in scene. (Right) Pipeline overview of system
including three distinct modules to edit scenes: edit NeRF models, create new NeRF models, and create 2D stable diffusion
renders of scenes.

ABSTRACT
Authoring 3D scenes is a central task for spatial computing applica-
tions. Competing visions for lowering existing barriers are (1) focus
on immersive, direct manipulation of 3D content; or (2) leverage
AI techniques that capture real scenes (3D Radiance Fields such
as, NeRFs, 3D Gaussian Splatting) and modify them at a higher
level of abstraction, at the cost of high latency. We unify the com-
plementary strengths of these approaches and investigate how to
integrate generative AI advances into real-time, immersive 3D Ra-
diance Field editing. We introduce Dreamcrafter, a VR-based 3D
scene editing system that: (1) provides a modular architecture to
integrate generative AI algorithms; (2) combines different levels
of control for creating objects, including natural language and di-
rect manipulation; and (3) introduces proxy representations that
support interaction during high-latency operations. We contribute
empirical findings on control preferences and discuss how gener-
ative AI interfaces beyond text input enhance creativity in scene
editing.

1 INTRODUCTION
Spatial computing applications such as Augmented and Virtual
Reality rely on 3D content and scenes. Thus, creating appropriate
tools for authoring and editing 3D content has been a long-standing
key challenge for HCI researchers.

Traditionally, mesh-and-texture-based approaches have been
used to author 3D content. Various research efforts to introduce

better editing techniques notwithstanding (e.g., [2, 19]), the exper-
tise hurdle to create and modify 3D content in this way has been
high, generally leaving such authoring to a small number of expert
users.

One avenue to lower the authoring barrier has been to embrace
authoring in VR (e.g. Google Tiltbrush [5]), where direct 3D input
is possible through VR controllers (or gestures) in an immersive
environment. This approach decreases the gulf of execution [18]
inherent in prior approaches to modeling 3D content using 2D
input devices.

More recently, two additional developments hold the promise
of reducing authoring burdens. First, novel approaches for repre-
senting 3D scenes based on radiance fields (e.g., NeRFs [24] and 3D
Gaussian Splatting [22]) allow for straightforward capture of pho-
torealistic environments from real scenes using common cameras,
instead of having to model objects from scratch. Second, generative
AI developments have introduced novel ways of editing radiance
field scenes at higher levels of abstraction, e.g. through text instruc-
tions (as in Instruct-NeRF2NeRF [16]). While offering the ability to
edit at a semantic level rather than a lower geometry level, such
techniques also tend to be compute-intensive and not yet amenable
to run in realtime.

The different approaches—rapid direct manipulation on the one
hand and high-level instruction-based editing on the other hand—
recall long-standing arguments in the HCI community on the bene-
fits of direct control vs. delegation [33]. In this paper, we investigate
if it is possible to unify the complementary strengths of real-time,
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immersive editing on the one hand, and generative AI-based ap-
proaches to high-level scene editing (with high latency) on the
other hand under a common interaction framework.

We introduce Dreamcrafter, a Virtual Reality 3D content gener-
ation and editing system assisted by generative AI. The core idea
behind Dreamcrafter is to use direct manipulation for spatial posi-
tioning and layout; and leverage generative AI for editing style and
appearance of objects. Because generative AI edits are unlikely to
run in real-time, Dreamcrafter introduces rapid proxy representa-
tions, e.g. using a 2D diffusion model to create a stand-in image for
a longer-running 3D generative task. Dreamcrafter enables both
2D (image) and 3D output.

Dreamcrafter makes three technical contributions: (1) Photo-
realistic scene representation. We use Gaussian splatting and neu-
ral radiance fields (NeRF) instead of traditional mesh-based rep-
resentations. (2) Modular architecture. This enables the system to
continuously integrate state of art generative AI models and lever-
age both 2D and 3D proxy representations. (3) Flexibility in scene
editing. A combination of voice prompts and detailed sculpting
using primitives gives both general and advanced users extensive
flexibility.

We investigate how users decide between different levels of con-
trol over a scene and how they use proxy representations through
a first-use study with eight participants. Using Dreamcrafter, par-
ticipants could either (i) generate entire objects using AI or (ii) first
construct 3D objects using pre-defined shapes (i.e., spheres, cubes,
etc.) and then stylize the construtions using generative AI. While
participants created more objects using the former interaction, they
felt more in control with the latter interaction. Regardless of gen-
eration approach, participants find the proxy previews useful for
scene composition.

2 BACKGROUND
We give a brief overview of Radiance Fields (NeRFs and Gaussian
Splatting) and Stable Diffusion.

Radiance Fields. Recent years have seen a move from traditional
3D graphics using meshes and geometries to more photorealistic
rendering techniques, such as Neural Radiance Fields (NeRFs) [24]
and Gaussian Splatting [22]. Radiance fields are 3D representations
of scenes or objects, as a function of radiance given position and
view direction, that can exhibit photorealistic view dependent ef-
fects. NeRFs are 3D representations that optimize a volumetric 3D
scene as a radiance field using a neural network trained on a set
of images. 3D Gaussian Splatting is akin to NeRFs. The main dif-
ference is that Gaussian Splatting uses 3D Gaussians to support
faster training and rendering via differentiable rasterization for
high-quality real-time visualizations. These techniques have been
shown to be highly effective at modeling details with realistic light-
ing, shadowing, and surfaces for real-world captures. And, with the
increase in applications requiring 3D content, these models can be
effectively used to quickly capture and create assets.

Stable Diffusion. Stable Diffusion [32] is a deep learning model
for synthesizing, or generating, images from text inputs using a

diffusion model. ControlNet [39] is a network architecture enhance-
ment to text-to-image models to condition the model on an input
image, generating stylized outputs.

3 RELATEDWORK
The most related prior work falls into three areas: 1) novel 3D
scene representations and tools for using them 2) generative scene
building systems and 3) creation systems in VR. We review each
area in turn.

3.1 Generating and editing novel 3D
representations using NeRFs

Several recent rendering techniques build upon NeRFs [24] and
3D Gaussian Splatting (3DGS) [22]. For example, LERFs [23], or
Language Embedded Radiance Fields use CLIP embeddings [30] to
allow users to query a NeRF using natural language to determine
regions of interest. ConceptGraphs [14] uses a similar technique
with CLIP embeddings but processes a more traditional 3D repre-
sentation of point clouds rather than NeRFs. These developments
have indicated the importance of object-centric labeling and editing
in the systems that are built and have guided our design of editing
components of 3D scenes in VR. By focusing on radiance fields, we
hope to lower the barriers to a wide range of representations, tasks,
and applications in the future.

While effective, these 3D representations are difficult for end
users to create, manipulate, and use. Recent efforts to make NeRFs
more approachable have included consumer facing systems such as
Luma AI [1], and research friendly APIs such as Nerfstudio [34] and
Instant-NGP [26]. Instruct-NeRF2NeRF [16] allow users to provide
as input a text prompt and an existing NeRF and output a new
NeRF stylized according to the text prompt, relying on 2D text and
image conditioned diffusion models such as InstructPix2Pix [3]. We
interface with Instruct-NeRF2NeRF to allow users to edit their 3D
scenes and objects. DreamFusion [28] also allows users to build a
NeRF or mesh from a text prompt.

Approaches to interactive editing of radiance fields are emerging.
NeRFShop [26] allows selecting, transforming, or warping NeRF
objects in a single scene with real-time feedback; however it lacks
generation capabilities. GaussianEditor [7] presents a web based
interface for 3DGS including object generation, but crucially does
not offer real-time proxies, making edits visible in 10-15 minutes.
Neither offer immersive interfaces.

3.2 Generative Scene Building Systems
Previous work has explored how to build editing interfaces for
generative AI models for 2D images or 3D meshes. WorldSmith
[9] generates 2D scenes composed of multiple text prompts and
blends across the generated images tiles. Similar to Dreamcrafter,
it allows users different abstractions of editing such as to generate
images via prompting or sketching but offers neither immersive
interactions nor 3D results. Text2Room[17] generates a fixed 3D
room given a single text prompt. Dreamcrafter allows editing of
existing 3D scenes and generation of individual objects.
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3.3 Creation Systems in VR
There is a long history of creation systems in VR. 3DM [6] laid the
groundwork by presenting a 3D modeling system operated via a
6-DoF mouse, offering a novel way to interact with digital objects in
three-dimensional space. Building on this, ISAAC [25] introduced
scene editing within Virtual Environments, allowing for a more
intuitive and immersive design process. Coninx et al. investigated
hybrid 2D and 3D editing [8]. CaveCAD [27], a system for freeform
virtual sculpting of organic shapes, enables artists and designers to
conceptualize and iterate on their creations in an intuitive manner
that closely mirrors the physical sculpting process. Furthermore,
Google’s TiltBrush [5] allows creators to paint with virtual light
and textures, extending the canvas beyond the limits of traditional
media. Similarly, VR games like Dreams [11], Figmin XR [37], and
Horizon Worlds [36] have provided valuable insights into user in-
teraction models, offering a glimpse into how VR can facilitate
complex design tasks while maintaining user-friendly interfaces.
Han et al. demonstrate the next steps in HCI design and interaction
with virtual environments by increasing accuracy and range of
physical gesture recognition, an approach that lends itself to more
natural and user-friendly interaction with the surrounding virtual
environment [15]. Several projects explore immersive scene editing
for related domains. Flowmatic explores arranging interactive ele-
ments. 360proto enables prototyping VR and AR interfaces through
paper mockups. 360proto can help visually arrange scenes through
layering but has limited editing capabilities. Neither focuses on
interactions for generative AI.

More recently, researchers have begun to explore the incorpo-
ration of generative AI in virtual environments. For example, the
Large Language Model for Mixed Reality (LLMR) framework [10]
leverages Large Language Models(LLM) and the Unity game engine
for real-time creation and modification of interactive Mixed Reality
experiences, showcasing the potential of LLMs to facilitate intuitive
and iterative design in mixed reality applications. Style2Fab[12]
also demonstrates the ability of generative model in personalized
3D model generation. The Dynamics-Aware Interactive Gaussian
Splatting System [20] also enables the creation of animated and
interactive experiences within virtual reality settings.

Our system leverages generative AI and natural language to
assist in 3D scene editing in virtual environments, but prior and
concurrent works don’t aim to create creativity tools leveraging
radiance fields.

4 DESIGN GOALS
Based on our review of related work, we identified a lack of research
into interaction techniques for working with emerging radiance
field techniques and generative AI in VR. Therefore, we formulated
the following design goals:

• Focus on creating and editing radiance field objects in
VR.Wewant to support users in populating 3D scenes with
radiance field objects. This may involve updating objects
already in the scene or creating completely new objects.

• Enable both directmanipulation and instruction-based
editing. Users may prefer different levels of control for var-
ious scene editing tasks. For example, users may want to

directly manipulate objects for detailed edits while prefer-
ring natural language instructions for larger scale edits.
Users should have access to both.

• Offer modular architecture to allow integration of
future generative AI advances. An important aim of
Dreamcrafter is to provides users with state-of-the-art 3D
object editing and generation technologies for environment
design in VR, so a modular framework is necessary.

• Preserve real-time interaction regardless of the la-
tency of editing operations. For real-time scene editing,
users should not be hindered by the system’s latency. In
the event that a process cannot be performed online, users
should have access to previews of the edits they have made
to the VR environment.
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Figure 2: Dreamcrafter system overview. Modules process-
ing pipeline: The Unity project sends API calls to the broker
server to run instructions from specific generation modules
and their outputs get sent back to the Unity project. Online
modules are run for previewing generations, and offlinemod-
ules are run after editing is complete.

5 SYSTEM DESIGN AND IMPLEMENTATION
Dreamcrafter provides an interface to edit and generate radiance
field objects using generative AI-enabled tools. Dreamcrafter sup-
ports different levels of user control and gives real-time proxy
representations to preview time-consuming edits and introduces
new workflows leveraging image diffusion models (i.e., Stable Dif-
fusion). Users can select fixed regions in space or existing objects
in the scene to apply spatial annotations. Existing or pre-captured
radiance field objects can be added to the scene via an object menu.
Generations and edits can be re-done or deleted. Each type of edit
and module is designed in the framework to be interchangeable
and modular allowing new types of interactions to be added in the
future, or replace existing ones. Spatial annotations are added to
objects or spaces that are assigned edits with corresponding proxy
representations based on edit instructions. Figure 1 shows spatial
annotations applied in a scene.

5.1 Key interactions
Dreamcrafter supports four interactions for moving, editing, and
generating new radiance field objects.
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Figure 3: Object transformations and direct manipulations
(Left) Positioning object in the scene (Center) Rotating object.
(Right) Scaling object

5.1.1 Move objects. Users can move objects (generated or radiance
field based) with spatial manipulations with hand movements and
VR controls. Objects can be positioned, rotated, or scaled within
the scene. Physics can be applied to help align the objects or stack
generated objects. Figure 3 illustrates this interaction.

Figure 4: Radiance Field Object Editing with preview (Left)
Edit variants are presented to a user. (Center) Displaying
selected edit preview as a spatial annotation. (Right) Fully
processed 3D edit replaces the original

5.1.2 Edit radiance field objects via prompting. Radiance field ob-
jects can be given stylistic or basic structural edits by pointing at
an object and speaking an instruction, e.g. “Make this chair chrome
and futuristic.” See Figure 4. A render of the object is given to the
Instruct-Pix2Pix module, which applies the instruction to show as a
2D preview of the edit. We chose to use Instruct-Pix2Pix to preview
this edit since it is a 2D equivalent of the 3D edit modules we use.
Users can select from three edit variants, which will be applied for
the final 3D object edit. Users can re-prompt edit instructions to
quickly iterate and preview before running a time consuming full
3D edit. Edits take approximately 10 seconds to generate previews.
Objects can be duplicated, re-edited, or deleted.

5.1.3 Generate objects via prompting. Users can generate objects
by pointing at the ground and speaking a prompt of the object
they want to create (Figure 5). This sends an API call to the 3D
generative module that includes Shap-E [21], which generates a
low fidelity mesh and render, and the render is stylized using depth
conditioned ControlNet [39] with the initial prompt. Optionally, the
object generation and image stylization module can be themed to
the scene through in-painting and masking methods. The user can
select from three stylized 2D image variants of the object. Genera-
tions take approximately 15 seconds to generate previews. During
an offline process, the full fidelity 3D objects are generated and
placed in the scene.

Figure 5: Object Generation via Prompting (Left) Object gen-
eration variations from speech input. (Center) Displaying
selected generation preview as a spatial annotation. (Right)
Fully processed 3D generation in the scene.

Figure 6: Object Generation via Sculpting (Left) Sculpting
toolkit to create primitive shape arrangement (Center) Dis-
playing stylized sculpted object preview as a spatial annota-
tion. (Right) Fully processed 3D generation in the scene.

5.1.4 Sculpt then stylize objects. Alternatively, users can generate
objects by creating an arrangement of basic 3D primitives (i.e.,
spheres, cubes, and cylinders) (Figure 6). A limited set of tools
are provided to position, rotate, uniformly scale the shapes. Users
then take a snapshot of this arrangement, which is stylized with
ControlNet based on a user-given prompt. Once the user confirms
the stylized and sculpted generation, the object can be placed in
the scene.

5.2 Proxy representations: Labels and Previews
Proxy representations are intended to help users see the impact
of their editing operations in real time. There are two types of
proxy representations: labels and image previews. Figure 4 (center)
and Figure 5 (center) show the labels and image previews. The
labels show the prompts users have spoken aloud as commands to
the generative AI modules (e.g., “make the sofa blue”). The image
previews show 2D versions of the anticipated generation. These
image previews are generated using Instruct-Pix2Pix which is the
underlying 2D image editing system used for the 3D radiance field
editing system, Instruct-NeRF2NeRF.

Both the labels and image previews are associated with radiance
field objects in the scene. This is done through a spatial annota-
tion framework we developed. The framework logs each object’s
positions, object type, generative AI prompt, and image preview
to a JSON file used for 3D generation and replacement, which we
discuss next.

Good proxies should be fast to generate and accurate in preview-
ing the final object. Dreamcrafter uses 2D image proxies because
existing 3D object editing and generation pipelines use 2D images
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under the hood. For example, Instruct-GS2GS uses Instruct-Pix2Pix
to first generate a 2D image from a natural language prompt and
then transform the 3D scene into its edited version guided by the
2D images. By accessing the generated Instruct-Pix2Pix 2D image
as the proxy in seconds, Dreamcrafter is able to show a preview
quickly and, critically, by design, ensure that the 2D image is an
accurate proxy of the 3D object.

In other words, Dreamcrafter’s approach to generating proxy
representations contributes a generalizable template for leverag-
ing intermediate representations of high-latency 3D operations as
proxies.

5.3 Modular System Design using Generative AI
modules

Dreamcrafter’s Unity client offers a modular interface to multiple
plug-and-play modules for real-time interactive and offline pro-
cessing tasks. The system is designed to easily update to newer
iterations of these generative AI models, which are commonly de-
veloped due to rapid interest in this field.

5.3.1 Online Processing Modules. A set of generative modules are
used to create rapid previews visible in the VR scene. Radiance field
object editing tasks use Instruct-Pix2Pix, an intermediate model
used for the full 3D edit which runs in 15 seconds. the object gener-
ation via prompting instruction use an text to 3D module, Shap-E,
to generate a low fidelity mesh and NeRF render. This render is
then stylized with ControlNet conditioned on edges and the same
text prompt to create three 2D preview variant generations. We
use Shap-E since it creates a render of a single object and an ob-
ject centric generation than a regular text to image model, and
provides a close approximation of using a more detailed text to
3D system. Object generation via sculpting displays a 2D preview
generated via ControlNet conditioned on depth and a snapshot of
the arranged 3D primitives. The sculpted arrangement acts as a 3D
proxy representation.

5.3.2 Offline Processing. Using the JSON log output from the spa-
tial annotation system, Dreamcrafter makes instruction and tool
specific API calls for each generative AI module. A Python broker
server receives a server message from the Unity project and for-
wards instruction parameters (e.g., instruction type, text prompt,
image input) to the specified module. Figure 2 shows an overview
of the system architecture. Object generation uses a 3D generative
module Shap-E, and a 2D image stylization module ControlNet and
Stable Diffusion. The full object 3D generations use 2D-image to
3D-model models such as GRM [38] or text-to-3D based system.
The final 3D object edits are done using Instruct-NeRF2NeRF for
NeRFs, or Instruct-GS2GS [35] for Gaussian Splatting objects. The
modules are exchangeable and can be implemented to use updated
AI models. After the edited objects are added to the scene, users can
repeat the process and edit the scene again, creating an iterative
design process.

5.4 Scene Outputs
5.4.1 3D Scenes. After offline processing, fully edited scenes can
be viewed as a 3D Unity scene composed of radiance field objects

and meshes. Optionally, training images can be captured of the
scene to create a radiance field of the entire scene.

5.4.2 Magic Camera. Users can position a virtual camera, we call
the Magic Camera, which stylizes a snapshot of a view of the scene
given a prompt through the ControlNet module. The resulting
stylization gives a coherent and realistic composition of the scene
based on the content and arrangement of objects, analogous to
rendering a frame in a traditional 3D editor. This feature can be
extended to act as a method of controlability in AI generated images
or video by using This 2D image output as input to an image-to-
video model. The magic camera output image could potentially be
used as input into to an image-to-3D scene system [13] whichwould
generate a 3DGS scene, editable in Dreamcrafter. This could create
an iterative design process where a user could create a general
layout of the objects and positions in the scene, and can use the
Magic Camera to stylize it, and then iteratively edit the 3D scene.

Figure 7: Magic Camera (Left) Scene input from virtual Unity
camera (Right) Stylized image output from Magic Camera
given the prompt: "realistic apartment living room"

5.5 Additional implementation details
Dreamcrafter is implemented in Unity using the Unity XR toolkit
and MRTK plugins for VR support. Gaussian Splats were rendered
using the open source Unity Gaussian Splatting viewer [29], and
example splats were trained using Nerfstudio and Luma AI. The
Unity app interfaces with the online generative modules using a
sending calls from a C# server to a python flask server which makes
API calls to separate generative with specified parameters.

6 EVALUATION
Two research questions motivated the evaluation:

(1) RQ1 - Levels of control. How do users want control over
scene edits? Specifically, when do they choose to generate
objects via prompting or sculpting? Why?

(2) RQ2 - Proxy representations. What are users’ reactions
to the proxy representations? Are they sufficient for envi-
sioning final scene edits?

6.1 Study Design and Procedure
After participants gave informed consent, the researchers walked
participants through a tutorial introducing the interactions for
editing and creating objects in Dreamcrafter. The tutorial took ap-
proximately 30 minutes. Once participants practiced and expressed
feeling comfortable performing the interactions, they were pre-
sented with the scenario of designing a 3D environment for a winter
holiday party. They were asked to complete the following tasks:
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• Dining area for six. Participants set up a dining area for
six people. The 3D environment was already populated
with a couple of tables and a chair that participants could
duplicate or edit.

• Photo area for party guests. Participants decorated an
open area for taking pictures. The task was to create a North
Pole scene by considering snowmen, elves, or trees.

• Gingerbread house. Participants created a gingerbread
house with two windows and one door.

• Unstructured editing. At the very end, participants were
given five minutes for free-form editing where they could
revisit any of the tasks above as they edited the scene to
their liking.

We designed the tasks such that they required a range of editing
and creating operations, where different modalities would likely
shine and showcase the flexibility of tools supported. The dining
area task was the most scaffolded, with relevant objects populating
the scene already and a small object library of radiance field objects
was given. We anticipated that this would encourage participants
to edit the existing radiance field objects or add relevant objects
from the object library. The photo area was more open-ended with
opportunities to place objects and generate new ones via prompting
or sculpting in an open area of the room.We use this task to examine
when users decide to prompt or sculpt and the benefits of the proxy
representations for scene composition. The gingerbread house was
the most specific task, likely requiring a significant amount of
control. For all the tasks, participants were encouraged to use any
interaction as they saw fit.

Upon completing the tasks, participants completed an exit survey
and interview. In total, the study lasted approximately 90 minutes.

6.2 Participants
Participants were recruited via word-of-mouth through VR-related
Slack channels, newsletters, and mailing lists. Participants self-
reported having relatively little experience in VR (median=2/5).
Four of the seven participants had prior experience with 3D tools
(Unity or Blender), and two participants had prior experience with
creative generative AI tools. Participants were compensated $35
for their time.

6.3 Measures and Analysis
For each task, we recorded and analyzed videos for how partici-
pants manipulated objects (i.e., editing vs. creating; prompting vs.
sculpting) andwhy.We also thematically analyzed their open-ended
survey questions and interview responses.

6.4 Results
Overall, participants reported that Dreamcrafter helped them edit
the scene as theywished [P2, P4, P6, P7]. P5 expressed how the scene
they created using Dreamcrafter was “not what [they] thought but
more interesting.” due to the sometimes unexpected results from
the generative models.

6.4.1 RQ1: Levels of control. Overall, participants rated their suc-
cess in achieving their desired edits highly (Dining area: median=5/7,
Picture area: median=5/7, Gingerbread house: median=4/7). For all

Table 1: Evaluation: Different levels of control used.

The number of objects created using each approach are in parentheses.
Participants used a combination of editing existing objects, creating objects
via prompting, and creating objects through sculpting throughout the tasks.
Four out of seven participants used a combination of prompting and sculpt-
ing throughout the study, including sometimes for the same task. While the
majority of participants created the majority of objects via prompting alone,
participants reported gravitating towards sculpting to control generation.

ID Dining area Photo area Gingerbread house

P1 Edit (2) Prompt (1) Prompt (1), Sculpt (1)
P2 Prompt (2) Prompt (3) Prompt (1)
P3 Edit (2) Prompt (3) Prompt (3)
P4 Edit (1) Prompt (3), Sculpt (1) Sculpt (1)
P5 Prompt (4) Prompt (6) Prompt (1), Sculpt (6)
P6 Edit (2) Prompt (3) Sculpt (1)
P7 Edit (2), Prompt (1) Prompt (4) Prompt (1)

tasks, participants more frequently generated objects using prompt-
ing instead of sculpting. Four out of seven participants used a
mixture of prompting and sculpting across the study tasks (Table 1).
Three even used both prompting and sculpting within the same
task. For example, P1 created most of the gingerbread house via
sculpting but then wanted to augment it with prompt-generated
windows.

When asked why they chose to create objects via prompting,
participants explained that prompting was easier to use [P2, P3, P4,
P5, P7]. Prompting helped them “save time” [P1], required less active
user involvement [P2], and resulted in “more polished” results [P3].
P4, explained, “The prompting tool did make it extremely easy to take
what I am thinking and make a relatively accurate depiction.”

Participants had mixed opinions on how well prompting served
their goals when they had specific details in mind. P1 and P6 ex-
plained that they preferred prompting over sculpting depending
on “typically how complicated I expected the object to be” [P6]. At
the same time, P4 reported “[the generated 2D proxy representation]
sometimes fell short in some minor details of what was described in
the prompt.”

In contrast to prompting, participants reported feeling they had
more control when sculpting then stylizing objects [P1, P4, P5]. P4
explained, “if I had an idea in my head that I know how I wanted
it to look like...it kind of had a little more restriction what the AI
used to create versus the prompting”. When asked when they chose
to sculpt, P1 and P5 explained that they preferred sculpting large-
scale objects, such as the gingerbread house. At the same time,
most participants, including P7 who did not use sculpting, wanted
to have access to more shapes [P4, P5, P6, P7] and finer grained
object manipulation [P2, P4, P6, P7], suggesting that sculpting may
ultimately be more desirable than we saw in our study.

6.4.2 RQ2: Proxy representations. Six out of seven participants pri-
marily relied on the image previews to get a sense of the scene’s
overall composition [P1, P2, P3, P4, P6, P7]. For example, P1 de-
scribed how the previews were “helpful to put stuff around and
see how it works for each other.” Similarly, P3 remarked how each
preview “helps for arrangement in the space.”
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Participants also reported that the image previews helped them
visualize individual objects [P4, P5, P6]. For instance, P6 said “It
was easy to create an object that was somewhat close to what I was
envisioning based on the preview it generated.”

Despite reporting that the were previews helpful for scene com-
position and object styling, when asked how sure they were about
how the final scene would look, P1, P2, and P6 reported feeling
unsure, rating their certainty at a 1 or 2 on the five-point scale.
The median score across all participants was a 3 out of 5. P5, who
found previews helpful for envisioning individual objects but not
the entire scene, pointed out a key limitation of the previews was
that size information was lost: “Some preview of the size an object
would take would be useful for just the prompting / not sculpting
part.” Therefore, proxy representations, while helpful for drafting
scenes and objects, are incomplete for fine-grained scene layout
and detailed editing.

Participants first envisioned and then described to the researchers
a scene based on the task instruction, then generated objects, and
finally positioned them. Some participants had a particular style
in mind (P1, P5) and tended to generate/edit objects to achieve
this style. Four participants (P1, P4, P5, P6) chose to use sculpting
for the gingerbread house construction task to control generated
details (e.g., placing two spherical windows above a rectangular
door). During the dining scene, most participants opted to use the
existing radiance field objects for tables and chairs. Four partic-
ipants further stylized the existing objects to be consistent with
their desired theme (e.g., Game of Thrones-esque).

6.4.3 System Limitations and Strengths. A primary limitation was
the scene’s physics. For six of the seven participants, rotating and
arranging objects in the scene were difficult [P2, P3, P4, P5, P6, P7].
For example, when editing the dining area, P2 expressed “When
chairs would fall over, it was very hard to put them back up. Also, if I
wanted to rotate or move the chairs they would tend to change size,
so by the end most of the chairs were all different sizes.”

A noticeable limitation during the tasks was that the sculpting
tool was sometimes difficult to use effectively. It took some time
for the users to create the desired arrangement of shapes and users
wanted additional familiar functionality present in most other sys-
tems (duplication, grouping, deletion). This difficulty may have
influenced their experience and affected the accuracy of the com-
parison with prompting, which was much easier to use.

Another important limitation was inaccurate speech recognition,
which became a major burden for users relying on prompting [P1,
P2, P3]. Despite this, most participants relied on prompting for set-
ting up the picture area and gingerbread house, so we would expect
that improved speech recognition would lead to more reliance on
prompting. Related, because the system had a five second speech de-
tection window, P5 expressed wanting the system give them more
time to express all the details they had in mind. In addition, the
text-to-image models sometimes provided unexpected generations
which required users to re-prompt the system multiple times.

Other technical challenges that participants reported were feed-
back time while waiting for Stable Diffusion results [P1, P5], awk-
ward VR controller mappings [P6, P7], discomfort in VR [P2, P6].

Despite challenges with object manipulation and speech recog-
nition, all participants expressed wanting to use Dreamcrafter in

the future for a myriad of reasons: interior design [P1, P3, P6, P7],
“my creative side” [P1], CAD in engineering [P4], and video game
design [P5]. P2 preferred to use a non-VR version. For P5, P6, and
P7, generating objects via prompting was the best part of the sys-
tem. This suggests that even with user experience issues, providing
multiple forms of user control, proxy representations, and access to
generative AI modules were desirable for diverse spatial computing
applications and users.

6.5 Revisions to System
Based on our preliminary user study, we updated the system to
address user concerns and improve existing features. Based on feed-
back regarding the 2D proxies (specifically from P5’s comments
on scene composition), we implemented 3D proxy representations
for object generation. This method imports the intermediate low-
fidelity mesh generated by Shap-e which can then be placed and
scaled in the scene and give the users a better sense of the object
placement, as well as work better with the Magic Camera by pro-
viding a reference for an object. We show a comparison between
the original 2D and new 3D proxy in Figure 8.

Figure 8: 3D and 2D Proxy Representations (Left) New 3D
proxy showing a low fidelity mesh preview (Right) Original
2D proxy representation with image preview

To prevent the need for users to over-explain a prompt to get a
detailed stylistic generation, we also experimented with the concept
of generating more detailed prompts with additional scene specific
context by appending specific keywords to the object generation
prompt to make the generation stylistically consistent with the
scene objects. We use GPT-4o with vision and prompt “Act as an AI
world building assistant and given this is the view from my vr headset,
I want to use speech to generate a new object in this space and given
the prompt, a ML model creates a 3D object out of it. Given a prompt
and image, I want you to make sure the object appears stylistically
similar to the scene shown in the image and other objects by adding
additional keywords to the prompt to describe the color, material, and
other structural details. I will tell you a prompt and give an image and
you will give the slightly longer version of the prompt with the detail
to make it stylistically consistent.” Given an images of the scene and
a very short prompt of the object, it adds descriptions of materials
and colors so the generated object matches with other objects in
the scene. We experimented with this pipeline independently, but
have not integrated it in the full system yet.

7 DISCUSSION
We investigate how to incorporate the benefits of real-time, immer-
sive editing and the advantages of high-level scene editing using
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Figure 9: Spatial annotation tags are placed over the radiance
field objects and generated objects with given instructions
and preview generations.

generative AI. We develop and evaluate the Dreamcrafter system,
which provides a modular architecture for generative AI algorithms,
offers different levels of interactive control, and leverages proxy
representations to show previews of high-latency edits to radiance
field objects.

Through a first-use study, we find that users, including those
without VR or scene editing experience, find the direct manipulation
(sculpting) and natural-language based (prompting) interactions
useful for editing and creating objects. Most use a mixture of both
interactions. Sculpting objects and then stylizing them with gen-
erative AI helps participants feel they have more control over the
generation process. Yet, participants create more objects using only
natural language prompts. This is not surprising given the relative
speed with which generative AI models can create object proxies
(previews). Interestingly, despite the control direct manipulation
affords them, participants preferred generative AI-based object cre-
ation over sculpting when they had very specific details for what
they wanted objects to look like. These findings suggest that sculpt-
ing may be useful for giving the general shape of an object while
prompting is useful for its specifics. Both sculpting and prompting
appear to serve different purposes in users’ design processes, so
supporting both forms of control is necessary for scene editing
tools to support a diversity of creative paths and styles [31].

Furthermore, participants found Dreamcrafter’s 2D proxy repre-
sentations of high-latency 3D object editing and creating operations
useful for editing 3D scenes. This suggests the importance of re-
altime feedback for spatial computing tasks. This also suggests
that leveraging 2D generation for 3D scenes may be a promising
path forward for providing realtime feedback. Additionally, provid-
ing both text and image proxy representations may be especially
important for future semantic, generative AI-based scene editing
systems.

Overall, in Dreamcrafter, we explore not only the feasibility
but also the benefits of providing both rapid direct manipulation
and high-level instruction-based editing support in 3D scene edit-
ing. Through varying levels of control and proxy representations,
Dreamcrafter is a step towards continuing to lower the barriers to
3D scene editing, especially for emerging graphical representations
such as NeRFs and Gaussian Splats.

Applicability to future user interfaces for generative models. We
believe that Dreamcrafter could also act as a world creation or stag-
ing tool for other generative AI design systems for 2D or video
output, we call spatial prompting. There is a desire for more visual
interfaces to image/video generative models in consumer applica-
tions. A system we explored during the project’s development was
using the Magic Camera to pre-visualize stylized scenes through
ControlNet and Stable Diffusion based on the construction of a
scene of only primitive objects, created and arranged within the VR
interface. Even with minimal object detail (e.g., cubes as a couch),
the system produced highly stylized, recognizable scenes and ob-
jects based on a single global scene prompt. Future improvements
could involve tagging objects for individual stylization and convert-
ing 2D renders into 3D scenes. Dreamcrafter could serve as an early
exploration into spatial prompting systems that offer more con-
trol for 2D/3D/video scene generation systems beyond limited text
prompting interfaces which are currently in SOTA consumer appli-
cations. Scenes and objects could be designed at a higher abstraction
level through primitive objects. These lower fidelity representations
are much easier to design and iterate, and can offer a variety of
different higher fidelity generations from the given arrangement
of primitives using methods from stable diffusion and ControlNet
generalized to 3D objects and scenes. These lower fidelity proxy
representations, optionally paired with semantic information like
text prompts, could help add controllability in 3D scene generations.
Arrangements of proxy representations could also be sourced from
other mediums such as images or videos of arrangements of physi-
cal objects or gestures/motion from users, potentially using an LLM
to interpret vague instructions. In the case of virtual production and
pre-visualization, methods discussed above could be used to create
a system that enables users to create low fidelity approximations
of scenes, movement of objects, and camera movement as input
modalities to generate a stylized high fidelity output from a video
diffusion model. As described in Sora’s technical report [4], video
diffusion models may have the potential to generate large scale
3D scenes and virtual worlds. These could be also edited through
methods in Dreamcrafter discussed above or used to complete or
extend 3D scenes. These methods could leverage all capabilities of
the editing and generation systems presented in Dreamcrafter.

8 LIMITATIONS AND FUTUREWORK
There are a few limitations to this work that offer opportunities for
future work.

Global scene editing. Dreamcrafter supports editing and creating
individual radiance field objects within an environment. However,
users may want to edit aspects of the underlying environment as
they design their scenes. One way we have begun to explore this
possibility is through developing functionality that allows users to
take a snapshot of an environment from a fixed perspective and
then stylize that snapshot, in a manner similar to how sculpted
objects are stylized in Dreamcrafter currently. The resulting gener-
ation suggests a possible way to stylize the scene and all objects
contained within it together. Ideally, users should be able to define
the perspectives they take snapshots from and how they stylize the
scene, perhaps even controlling which objects receive the global
style treatment.
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Additional ways to control generation. A key focus of future work
should be the development of more intuitive ways to generate ra-
diance field objects. For instance, rather than rely solely on voice
commands, what if users could Dreamcrafter with text or 2D/3D
sketches as input, which then get translated into or serve as gener-
ative AI prompts? Incorporating voice commands for positioning
like “place the table next to the blue chair” would make the system
more user-friendly without having to manually place objects.

We anticipate that Dreamcrafter’s modular design will help ex-
plore new interaction techniques. Dreamcrafter has separate mod-
ules for object generation, for using AI to create new objects, and
spatial annotation, for placing objects in the scene. By separating
these concerns, Dreamcrafter has the potential to evolve with not
only new AI technologies but also new 3D representations (i.e.,
whatever may replace radiance fields for photorealistic rendering
in the future).

Even more rapid proxies. While Dreamcrafter currently supports
speech-to-text prompt labels and image previews, what might alter-
native proxies or intermediate proxies between 2D and 3D objects
look like? For example, would users find 3D wireframe outlines just
as useful as the 2D image previews? Furthermore, if users could
stylize entire scenes, what would the appropriate proxy for the
entire scene be? A sketch of the new alongside the old?

Automatic Segmentation. Dreamcrafter currently takes in input
of full 3DGS and objects, however it currently is unable to edit
objects that are fixed in the scene. To enable editing and placement
of objects baked in existing scenes, having automatic semantic seg-
mentation could be used to streamline the editing workflow, making
it more efficient for users, without requiring manual segmentation.

We believe that these avenues of future work can apply to future
3D editors.

9 CONCLUSION
The idea behind Dreamcrafter is to use direct manipulation for spa-
tial positioning and layout; and leverage generative AI for editing
style and appearance of photorealistic objects. Because generative
AI edits are unlikely to run in real-time, Dreamcrafter introduces
rapid proxy representations, e.g. using a 2D diffusion model to
create a stand-in image for a longer-running 3D generative task.
Dreamcrafter enables both 2D (image) and 3D output. In a first-use
study, participants report feeling more in control of AI generation
when they first sculpt objects before stylizing them with generative
AI. Participants also report finding proxy representations useful for
scene editing.
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